
Preliminaries
for the Benelux Algorithm Programming Contest

Problems
A Abandoned Animal
B Booming Business
C Crowd Control
D Disastrous Doubling
E Envious Exponents
F Flatland Fidget Spinner
G Ghostbusters
H Horror Film Night
I Intelligence Infection
J Journal Editing
K Knight’s Marathon
L Leapfrog



Copyright c© 2017 by the BAPC 2017 Jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/


Problem A: Abandoned Animal 3

A Abandoned Animal

Your little sister has been a big help today: she went into town
to do all the groceries! During this grand voyage, she was ac-
companied by her fluffy friend, Mr. Fluffynose the Stuffed An-
imal. However, after her return, it seems that she has left him
somewhere along the route! This is devastating news for your
little sister, and as she won’t stop crying about it, you decide
to retrace her steps through town.

You know that your sister will hold on to her beloved Fluffynose whenever possible, so the
only time she could’ve lost it is when she grabbed an item on her shopping list. So, all you
have to do is figure out at what store she bought what, and then you’ll reunite her with
her counterpart in no time! However, you soon find out that this isn’t quite as easy as you
thought: she went to a lot of stores, and although she knows the names of the stores she went
to and the order in which she visited them, she does not recall what she bought at each store
(it could have been nothing!). It would take a lot of time to blindly search all the stores for
all these items. As you have better things to do today, like solving programming problems,
you want to spend as little time on this retrieval as possible. Therefore, you want to know
exactly which items your sister bought at each store before you start your search.

For this you have two pieces of information: firstly you know the inventory of all stores your
sister went to. Secondly, you know exactly in what order she purchased the groceries, as she
has very carefully stacked all items into her bag. You decide to number the stores your sister
visited according to the order in which she visited them. Given this information, you want to
decide whether you know for sure where she bought every item so you can retrace her steps
as efficiently as possible.

Input

The input starts with a line with a single integer 1 ≤ N ≤ 100,000, the number of super-
markets in town. Then follows a line with an integer N ≤ K ≤ 100,000, after which K lines
follow with a space-separated integer i (between 0 and N − 1) and a string S (consisting of
only lowercase letters, at most 10), denoting that item S is available at the ith store that your
sister visited. It is guaranteed that every store has at least one item, every item is available
at at least one store, and that every item occurs at most once at every store.

The second part of the input contains the list of items your sister bought, in order of purchase.
It starts with a line with an integer M ≤ K, the number of items your sister has bought.
Then follow M lines, each with string T , denoting the name of the item your sister bought.
The items are given in the order she purchased them in. All items that your sister has bought
are unique.

Output

Output “impossible” if there is no path through the stores that matches your sister’s



4 Problem A: Abandoned Animal

description. Output “unique” if there is exactly one path through the stores that matches.
Output “ambiguous” if there are multiple possible paths.

Sample Input 1 Sample Output 1
3
3
0 chocolate
1 icecream
2 cookies
3
chocolate
cookies
icecream

impossible

Sample Input 2 Sample Output 2
3
4
0 chocolate
1 icecream
2 cookies
2 chocolate
3
chocolate
icecream
cookies

unique

Sample Input 3 Sample Output 3
3
10
0 tomatoes
0 cucumber
1 tomatoes
2 tomatoes
2 cucumber
1 mustard
0 salt
2 salad
2 salt
2 mustard
5
tomatoes
cucumber
salad
mustard
salt

ambiguous



Problem B: Booming Business 5

B Booming Business

You are an expert in bonsai, the Japanese art of cultivating small trees in small containers.
Every year, you win the Bonsai Association’s Pruning Competition (BAPC). With all this
talent, it would be a shame not to turn your hobby into your job. Recently, you have rented
a small store where you will sell your creations. Now you need to make a window display to
draw in customers. Of course, you would like to grow the most impressive tree that will fit
the window, but the window is only so tall, and the floor of the display can only bear so much
weight. Therefore, you want a tree that is exactly so tall and so heavy that it can fit in your
window.

Being an expert, you know that by definition a bonsai tree consists of a single branch, with
0 or more smaller bonsai trees branching off from that branch.

Figure 1: Four distinct examples of bonsai trees.

The height and weight of a bonsai tree can be carefully determined. A tree’s weight is equal
to the number of branches that appear in it. The weights of the trees in Figure 1 are 1, 4,
6 and 6, respectively. A tree’s height is equal to the length of the longest chain of branches
from the root to the top of the tree. The heights of the trees in Figure 1 are 1, 2, 3 and 3,
respectively.

To make the most use of your window, you want to produce a bonsai tree of the precise
height and weight that it can support. To get an idea of the number of options available
to you, you would like to know how many different trees you could possibly grow for your
store. Given a height and a weight, can you determine the number of trees with exactly that
height and weight? Because the number may be very large, you may give your answer modulo
1,000,000,007.

Input

A single line containing two integers, h and w, with 1 ≤ h,w ≤ 300.

Output

Output a single line containing a single integer, the number of bonsai trees of height h and
weight w, modulo 109 + 7.

Sample Input 1 Sample Output 1
2 4 1



6 Problem B: Booming Business

Sample Input 2 Sample Output 2
3 5 7

Sample Input 3 Sample Output 3
20 50 573689752



Problem C: Crowd Control 7

C Crowd Control

Picture by David Evers via Flickr

The BAPC draws a large number of visitors to Amsterdam.
Many of these people arrive at the train station, then walk from
intersection to intersection through the streets of Amsterdam
in a big parade until they reach the BAPC location.

A street can only allow a certain number of people per hour
to pass through. This is called the capacity of the street. The
number of people going through a street must never exceed its
capacity, otherwise accidents will happen. People may walk
through a street in either direction.

The BAPC organizers want to prepare a single path from train station to BAPC location.
They choose the path with maximum capacity, where the capacity of a path is defined to be
the minimum capacity of any street on the path. To make sure that nobody walks the wrong
way, the organizers close down the streets which are incident1 to an intersection on the path,
but not part of the path.

Can you write a program to help the organizers decide which streets to block? Given a graph
of the streets and intersections of Amsterdam, produce the list of streets that need to be
closed down in order to create a single maximum-capacity path from the train station to the
BAPC. The path must be simple, i.e. it may not visit any intersection more than once.

Input

• The first line contains two integers: n, the number of intersections in the city, and m,
the number of streets (1 ≤ n,m ≤ 1000).

• The following m lines each specify a single street. A street is specified by three integers,
ai, bi and ci, where ai and bi are ids of the two intersections that are connected by this
street (0 ≤ ai, bi < n) and ci is the capacity of this street (1 ≤ ci ≤ 500000). Streets
are numbered from 0 to m− 1 in the given order.

You may assume the following:

• All visitors start walking at the train station which is the intersection with id 0. The
BAPC is located at the intersection with id n− 1.

• The intersections and streets form a connected graph.

• No two streets connect the same pair of intersections.

• No street leads back to the same intersection on both ends.

• There is a unique simple path of maximum capacity.
1An edge is incident to a vertex if the vertex is an endpoint of the edge.



8 Problem C: Crowd Control

Output

Output a single line containing a list of space separated street numbers that need to be blocked
in order to create a single maximum-capacity path from train station to BAPC. Sort these
street numbers in increasing order.

If no street must be blocked, output the word “none” instead.

0

1

2

3
4

5

6

c1=800

c2=300

c3=75
c4=80

c5=50

c6=100

c7=35

c8=10

c9=120 c10=100

Figure 2: Illustration of the first example input.

Sample Input 1 Sample Output 1
7 10
0 1 800
1 2 300
2 3 75
3 4 80
4 5 50
4 6 100
6 1 35
0 6 10
0 2 120
0 3 100

0 2 4 6 7 8

Sample Input 2 Sample Output 2
4 4
0 1 10
1 2 50
0 3 30
1 3 20

0 3

Sample Input 3 Sample Output 3
4 3
0 1 10
1 2 20
2 3 30

none



Problem D: Disastrous Doubling 9

D Disastrous Doubling

Picture by Rocky Mountain
Laboratories via Wikipedia

A scientist, E. Collie, is going to do some experiments with bacteria.
Right now, she has one bacterium. She already knows that this
species of bacteria doubles itself every hour. Hence, after one hour
there will be 2 bacteria.

E. Collie will do one experiment every hour, for n consecutive hours.
She starts the first experiment exactly one hour after the first bac-
terium starts growing. In experiment i she will need bi bacteria.

How many bacteria will be left directly after starting the last experiment? If at any point
there are not enough bacteria to do the experiment, print “error”.

Since the answer may be very large, please print it modulo 109 + 7.

Input

The input consists of two lines.

• The first line contains an integer 1 ≤ n ≤ 105, the number of experiments.

• The second line contains n integers b1, . . . , bn, where 0 ≤ bi ≤ 260 is the number of
bacteria used in the ith experiment.

Output

Output a single line containing the number of bacteria that remains after doing all the ex-
periments, or “error”.

Sample Input 1 Sample Output 1
3
0 0 0

8

Sample Input 2 Sample Output 2
5
1 1 1 1 1

1

Sample Input 3 Sample Output 3
5
0 2 2 4 0

0

Sample Input 4 Sample Output 4
5
0 2 2 4 1

error



This is not a blank page.



Problem E: Envious Exponents 11

E Envious Exponents

Picture by Stuart Caie via
Flickr

Alice and Bob have an integer N . Alice and Bob are not happy with
their integer. Last night they went to a cocktail party and found
that another couple had the exact same integer! Because of that
they are getting a new integer.

Bob wants to impress the other couple and therefore he thinks their
new integer should be strictly larger than N .

Alice herself is actually fond of some specific integer k. Therefore,
Alice thinks that whatever integer they pick, it should be possible
to write it as a sum of k distinct powers of 2.

Bob is also a cheapskate, therefore he wants to spend as little money as possible. Since the
cost of an integer is proportional to its size, he wants to get an integer that is as small as
possible.

Input

• A single line containing two integers N and k, with 1 ≤ N ≤ 1018 and 1 ≤ k ≤ 60.

Output

Output M , the smallest integer larger than N that can be written as the sum of exactly k

distinct powers of 2.

Sample Input 1 Sample Output 1
1 2 3

Sample Input 2 Sample Output 2
12 2 17

Sample Input 3 Sample Output 3
1 5 31

Sample Input 4 Sample Output 4
182 3 193



This is not a blank page.



Problem F: Flatland Fidget Spinner 13

F Flatland Fidget Spinner

A fidget spinner

Freddy the Flatland Photographer wants to report on
fun new things in Flatland for the Flatland Financial
Times. He saw a really nice picture of a Fidget Spinner
in Flatland Weekly, and he would like to publish a
similar picture. Actually, he likes the picture so much
he would like to use the exact same picture. Flatland
copyright law forbits Freddy from copying the picture, so he decides to take an originalTM

picture that looks the same. Can you help Freddy position his camera?

On Flatland Photography
Freddy has one really fancy 1MP camera, but also some cheaper cameras with a smaller
number of pixels. Each pixel records three floating point numbers between 0 and 1, (R,G,B),
representing a colour. In the picture that he wants to reproduce, the Fidget Spinner is
photographed on a (0, 0, 0) black background. At most 40% of the picture is fully black.
The Fidget spinner is not “cut off”; the leftmost and rightmost pixel are always fully black.
The arms of the Fidget Spinner have really pure colours; in counter clockwise order, they are
(1, 0, 0) red, (0, 1, 0) green and (0, 0, 1) blue. The arms are length one each, and all separated
by equal angles (2π

3 = 120◦). The Fidget Spinner is located at the Origin Photography Studio,
with its middle at coordinates x = 0, y = 0, and the tip of its blue arm at x = −1, y = 0.

A flatland camera setup and the resulting picture

In the above example, a camera with n = 8 pixels is used. This vintage camera has a viewing
angle of θ = 80◦, thus one pixel covers a 10◦ angle. The camera is placed at angle α (the
counter clockwise angle between the positive x-axis and the center of the camera view). In the
above example, one pixel covers both the red and blue arm of the Fidget Spinner. Within this
pixel’s range, blue covers 6◦ while red covers 4◦. As a result, the (R,G,B)-color registered
by this pixel is 4

10 · (1, 0, 0) + 6
10 · (0, 0, 1) = (0.4, 0.0, 0.6), a shade of purple. Freddy is happy

with the replica if the R, G and B components of all pixels are at most 0.1 different from the
original picture, so, for example, a slightly different purple (0.31, 0.1, 0.7) is also fine.



14 Problem F: Flatland Fidget Spinner

Input

One line, containing the camera properties; the number of pixels 8 ≤ n ≤ 106 and the viewing
angle 2π

8 ≤ θ ≤ 2π
4 (in radians). Then the picture is given in n lines each containing three

floating point numbers 0 ≤ R,G,B ≤ 1 with R+G+B ≤ 1+10−10. The pixels are ordered in
clockwise order. All floating point numbers in the input will have at most 10 decimal digits.

Output

Print space separated numbers x, y, and 0 ≤ α < 2π: a position and rotation (in radians) of
the camera that would (nearly) reproduce the input picture.

Sample Input 1 Sample Output 1
8 1.538
0 0 0
0 0 0
0 0 0.4502869372
0 0 1
0.3773483381 0 0.6226516619
1 0 0
0.7631122372 0 0
0 0 0

-1.5 -2 1.047

Sample Input 2 Sample Output 2
10 0.916
0 0 0
0 0 0
0 0 0
0 0 0.8760797241
0 0 1
0.251073 0.362151 0.386776
0 1 0
0 1 0
0 0.3465619503 0
0 0 0

1.6474 -2.565784 2.2



Problem G: Ghostbusters 15

G Ghostbusters

The Bureau of Approved Peripherals for Computers (BAPC) is designing a new standard
for computer keyboards. With every new norm and regulation, hardware becomes obsolete
easily, so they require your services to write firmware for them.

A computer keyboard is an array of M rows and N columns of buttons. Every button has an
associated probability. Furthermore, every column and every row of buttons has an associated
cable, and every pressed button connects their row cable with their column cable (and vice
versa!). The keyboard detects key presses by “sampling”. It sends an electric signal through
the first row. This signal spreads to columns that are connected to it through pressed buttons
on that column and to rows connected to these columns through other pressed buttons and
so on. Every row or column that is connected, possibly indirectly, to the original row via
pressed buttons receives the signal. The firmware stores which columns have received the
signal. This process is repeated for every row.

It is easy to identify what was pressed if only one key was pressed. In this case only one pair
(row, column) will make contact. But keyboards allow to press more than one key at the
same time and unfortunately some combinations of key presses are impossible to tell apart.
This phenomenon is called “ghosting”. For example, in a 2 × 2 keyboard, all combinations
of three or four presses are impossible to tell apart, since every pair (row, column) makes
electric contact (maybe indirectly), as can be seen in Figure 3.

Figure 3: Four examples of connected wires in a keyboard. Bold lines of the same colour indicate
wires that are connected via pressed buttons, which are depicted as red dots. The two sets of pressed
buttons on the right cannot be distinguished from each other, since they connect the same rows and
columns.

The BAPC wants to deal with the problem of ghosting by finding the most likely combination
of pressed keys that could have produced a particular set of signals.

Input

The input consists of

• A line containing two integers, M the number of rows of the keyboard and N the number
of columns, with 1 ≤ M,N ≤ 500.

• M lines with N numbers each, where the jth number in the ith line indicates the prob-
ability 0 < p < 0.5 that the key in row i and column j is pressed. Here 0 ≤ i ≤ M − 1
and 0 ≤ j ≤ N − 1.



16 Problem G: Ghostbusters

• M lines, each with an integer 0 ≤ k ≤ N and a list of k integers. The list of integers on
the ith line indicates the columns that received the signal emitted by the ith row.

Output

Output the set of pressed keys that is most likely given the input. Any solution that achieves
the maximum probability will be accepted. For each pressed key output a line with two
integers r and c, separated by a space, indicating the row r and the column c of the key. The
lines must be outputted in lexicographical order, that is, output first the keys whose row is
lower and if the rows are the same output first the key whose column is lower.

Sample Input 1 Sample Output 1
2 2
0.1 0.4
0.4 0.4
2 0 1
2 0 1

0 1
1 0
1 1

Sample Input 2 Sample Output 2
3 3
0.3 0.4 0.2
0.3 0.4 0.2
0.4 0.1 0.4
1 1
2 0 2
2 0 2

0 1
1 0
2 0
2 2



Problem H: Horror Film Night 17

H Horror Film Night

Emma and Marcos are two friends who love horror films. This year,
and possibly the years hereafter, they want to watch as many films
together as possible. Unfortunately, they do not exactly have the
same taste in films. So, inevitably, every now and then either Emma
or Marcos has to watch a film she or he dislikes. When neither of
them likes a film, they will not watch it. To make things fair they
thought of the following rule: They can not watch two films in a
row which are disliked by the same person. In other words, if one of
them does not like the current film, then they are reassured they will
like the next one. They open the TV guide and mark their preferred
films. They only receive one channel which shows one film per day.
Luckily, the TV guide has already been determined for the next 1
million days.

Can you determine the maximal number of films they can watch in a fair way?

Input

The input consists of two lines, one for each person. Each of these lines is of the following
form:

• One integer 0 ≤ k ≤ 1000000 for the number of films this person likes;

• followed by k integers indicating all days (numbered by 0, . . . , 999999) with a film this
person likes.

Output

Output a single line containing a single integer, the maximal number of films they can watch
together in a fair way.

Sample Input 1 Sample Output 1
1 40
2 37 42

3

Sample Input 2 Sample Output 2
1 1
3 1 3 2

2

Sample Input 3 Sample Output 3
1 2
1 2

1



This is not a blank page.



Problem I: Intelligence Infection 19

I Intelligence Infection

Picture by Kieran Lamb via
Flickr

You are a spy for the Benevolent Agent Protection Center (BAPC)
and have recently obtained some top secret information. As you are
very excited about this discovery, you want to inform your fellow
spies of these newfound documents by sending a message to each
of them. One option is to privately message all spies within your
organization, but this takes a lot of time. Fortunately, the other
spies have networks of their own, so they are able to pass on your
message to other spies.

However, there are enemy spies in the network, who will pass along the message to the enemy
organization. It is therefore vital that the enemy spies do not receive your message. Luckily,
you happen to know who these traitors are, so you can avoid them.

There are two ways for you to send the information to other spies in the network: either by
private or by public message. If you use a private message, the receiving spy knows that the
message is confidential and they will not tell any other spy. If, on the other hand, you send a
spy a public message, the spy will notify all other spies he/she can contact about the message.
Since the message is not deemed confidential for them, these spies will in turn contact all spies
they can get in contact with and so on (regardless of any messages that they received before).
Since you do not want anyone else to know who the enemy spies are, you cannot tell people
to contact only specific connections.

Because of the huge size of your spy network, you would like to minimize the number of people
you personally need to tell the secret message, while ensuring that no enemy spies receive the
message. Can you find out how many spies you need to message?

Input

The input consists of three parts:

• The first line contains three integers, S, E and C. The first integer (1 ≤ S ≤ 50.000)
denotes the total number of spies in the network (yourself not included), the second
integer (0 ≤ E ≤ S) denotes the total number of enemies in the network and the third
integer specifies the total number of connections (0 ≤ C ≤ 105) between spies in the
network.

• Then follow C lines, with two integers 0 ≤ S1 < S and 0 ≤ S2 < S on each line,
indicating that there is a connection from spy S1 to spy S2. These connections are not
symmetric.

• Finally, one line with E integers, indicating that these spies are enemies.

You may assume that you can message every spy in the network directly.



20 Problem I: Intelligence Infection

Output

Output a single line with one integer indicating the minimum number of messages you need
to send to other spies, counting both private and public messages.

Sample Input 1 Sample Output 1
4 1 3
0 1
1 2
2 3
1

2

Sample Input 2 Sample Output 2
4 0 4
0 2
0 1
2 1
2 3

1

Sample Input 3 Sample Output 3
4 2 5
0 1
0 2
0 3
1 3
2 3
1 2

2



Problem J: Journal Editing 21

J Journal Editing

X ` f : α → β X ` x : α
X ` fx : β

f : α → β ` λx.fx : α → β

` λf.λx.fx : (α → β) → α → β

David is writing an article for the Bulletin of the Association of
Proof Completions. In his article, he proves several theorems.
For every theorem, David came up with a proof. Since David
is a very eager student, he even came up with multiple proofs
for some of the theorems. As usual, a proof for a theorem may depend on a number of other
theorems.

The article has to be as short as possible to publish it, and David only really cares about the
main theorem, Theorem 0. In order to achieve this, he has estimated the number of words he
will need for every proof. Can you help David find the shortest possible length of his article?

Input

• A single line containing 1 ≤ n ≤ 20, the number of theorems.
• For each theorem:

– A single line containing 1 ≤ pi ≤ 10, the number of proofs for the ith theorem.
– pi lines, each of the form l, k, d0, . . . , dk−1, where 0 ≤ l ≤ 106 is the length of the

proof, 0 ≤ k ≤ n − 1 is the number of theorems the proof depends on, and the
0 ≤ di ≤ n− 1 are the numbers of the theorems the proof depends on.

Output

Print one line with a single integer, the shortest possible length of David’s article.

Sample Input 1 Sample Output 1
2
2
10 0
3 1 1
1
4 1 0

10

Sample Input 2 Sample Output 2
4
2
1 2 1 3
5 1 2
1
2 0
1
0 0
2
2 0
1 1 1

4



This is not a blank page.



Problem K: Knight’s Marathon 23

K Knight’s Marathon

Figure 4: The possible
moves for a knight.

After an exhausting battle, the invading army is finally defeated.
The king sends his only surviving knight to the kingdom’s capital
to tell the people of your victory. This might be a very (very!) long
journey.

The knight moves as on a chessboard: in each move, he travels two
squares in one of the four compass directions, and one more square
sideways. During his journey, he must remain inside the kingdom to
avoid starting any new wars. The kingdom is a NX×NY rectangular
grid, which is possibly much (much!) larger than the 8 × 8 board
on which the battle was fought. The rows and columns in this kingdom are numbered from
0. The knight starts at square KX ,KY , and must travel to the capital at square CX , CY .
Output the smallest number of moves in which the knight can reach the capital.

Input

The input consists of three lines, each containing two integers:

• On the first line: NX , NY , the size of the kingdom, with 8 ≤ NX , NY ≤ 109.
• On the second line: KX ,KY , the knight’s starting position, with 0 ≤ KX < NX and

0 ≤ KY < NY .
• On the third line: CX , CY , the position of the capital, with 0 ≤ CX < NX and

0 ≤ CY < NY .

Output

Output a single line containing a single integer, the number of moves the knight will need to
get to the capital.

Sample Input 1 Sample Output 1
8 8
0 0
7 7

6

Sample Input 2 Sample Output 2
1000 7000
253 6789
253 6789

0

Sample Input 3 Sample Output 3
8 1000000000
3 3
3 999999999

499999998



This is not a blank page.



Problem L: Leapfrog 25

L Leapfrog

Somewhere in an animal kingdom far from here there is a
large forest. Inside the forest live a large number of frogs.
Every year the frogs gather along the big central road in
the forest to show the other animals their unique ability
during the Big Animal Prowess Conference (BAPC).

These frogs are experts in forming towers by climbing on
top of each other. They are, however, not experts in gath-
ering orderly on the road, so the frogs have arrived on
different positions along the central road. The frogs are also notorious show offs: their ev-
ery jump is as far as they can and always a prime distance. Not every frog is as strong as
the others, so jumping distances may vary. Naturally, the frogs only jump to increase their
position, never the other way!

The frog king wants to invite all visitors of the BAPC to marvel at the most spectacular frog
tower. Multiple frog towers can be created, but the king wants to show the largest tower at
the smallest possible position. He doesn’t want anyone to miss the action because they were
at the wrong spot! Can you help the frog king determine the position and size of the tower?

Input

• On the first line one integer n, the number of frogs gathering on the central road, with
1 ≤ n ≤ 40.

• Then follow n lines with integers xi and di, the initial position and prime jumping
distance of the ith frog. Here 0 ≤ xi ≤ 260 and 2 ≤ di ≤ 108. It is given that the
product of all unique jumping distances is less than 109.

Output

Output a single line with two integers indicating:

• the smallest position of the highest frog tower,
• the size of the highest frog tower.

Separate these integers by a space.

Sample Input 1 Sample Output 1
3
0 2
1 2
3 3

3 2



26 Problem L: Leapfrog

Sample Input 2 Sample Output 2
5
0 2
1 3
3 3
7 5
9 5

12 3

Sample Input 3 Sample Output 3
2
9972 9973
9966 9967

99400890 2


